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Abstract

Separating footprints of adaptation from demography is challenging. When selection has acted on a single locus with
major effect, this issue can be alleviated through signatures left by selective sweeps. However, as adaptation is often
driven by small allele frequency shifts at many loci, studies focusing on single genes are able to identify only a small
portion of genomic variants responsible for adaptation. In face of this challenge, we utilize coexpression information to
search for signals of polygenetic adaptation in Theobroma cacao, a tropical tree species that is the source of chocolate.
Using transcriptomics and a weighted correlation network analysis, we group genes with similar expression patterns into
functional modules. We then ask whether modules enriched for specific biological processes exhibit cumulative effects of
differential selection in the form of high FST and dXY between populations. Indeed, modules putatively involved in protein
modification, flowering, and water transport show signs of polygenic adaptation even though individual genes that are
members of those groups do not bear strong signatures of selection. Modeling of demography, background selection, and
the effects of genomic features reveal that these patterns are unlikely to arise by chance. We also find that specific
modules are enriched for signals of strong or relaxed purifying selection, with one module bearing signs of adaptive
differentiation and an excess of deleterious mutations. Our results provide insight into polygenic adaptation and con-
tribute to understanding of population structure, demographic history, and genome evolution in T. cacao.

Key words: polygenic adaptation, deleterious mutations, background selection, local adaptation, coexpression net-
work, cacao.

Introduction
The frequency of genomic variants segregating within pop-
ulations is shaped by both selection and demographic history.
Disentangling these effects is complicated given that both
adaptation and drift can leave similar signatures at the
DNA level (Nielsen 2005). A traditional view arising from
population genetics theory is that adaptation is driven by
large allele frequency shifts at few loci (Wright 1931), leaving
behind distinct signals of “selective sweeps” (Maynard Smith
and Haigh 1974). The majority of empirical population ge-
netic analyses have focused on identifying these genes of
major effect. By contrast, the contending view of quantitative
genetics is that the response to selection happens through
correlated changes at many loci—a concept rooted in the
“infinitesimal” model of Fisher (1918). The latter process
results in subtle signals in population genomic data that are
considerably more difficult to detect than sweeps (Stephan
2016). Whether adaptation is attributed to large sweeps, small
frequency shifts, or to something in between, is dependent on
the genetic architecture underlying phenotypic variation, a

species life history, and the strength of selection (Chevin and
Hospital 2008; Hermisson and Pennings 2017; Höllinger et al.
2019). Although considerable effort has been spent in quan-
tifying the distribution of effect sizes that individual loci play
in human adaptation (Pritchard et al. 2010; Boyle et al. 2017;
Sella and Barton 2019), little is known about this topic in
other species, particularly in plants.

Regardless of the species, most research on selection shap-
ing genomic diversity has focused on processes that favor the
spread of adaptive alleles, that is, positive selection (Biswas
and Akey 2006), or to a lesser extent balancing selection (Tian
et al. 2002). Recently, however, interest has grown in identi-
fying not only selectively favored alleles but also maladaptive
alleles (Chun and Fay 2011; Kono et al. 2016; Zhang et al. 2016;
Zhou et al. 2017). These maladaptive alleles constitute a ge-
netic load, and characterizing the extent of the load in a
species, as well as the efficacy of purifying selection in remov-
ing it, provides insights into the constrains and costs of adap-
tive evolution (Eyre-Walker and Keightley 2007). In
agronomically important species, the identification of
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deleterious alleles also may help to understand the costs of
domestication and possibly lead to ways for improving yields
(Cornejo et al. 2018; Gaut et al. 2018; Valluru et al. 2019).

One approach for resolving the statistical challenges of
identifying weak selection acting on multiple genes is to uti-
lize polygenic scores from genome-wide association studies
(GWAS) (Berg and Coop 2014; Exposito-Alonso et al. 2018;
Rosenberg et al. 2018; Sella and Barton 2019). GWAS, how-
ever, requires that adaptive traits are known and measured in
large samples. These requirements not only limit the potential
application of these methods to a handful of well-studied
species but also steer the field toward traits that are relatively
easy to measure (e.g., human height: Berg and Coop 2014;
Berg et al. 2019; Sohail et al. 2019). A promising alternative
that avoids many of the shortcomings of polygenic score
analysis is to identify gene groupings, which can be based
on putative function (Ashburner et al. 2000), biochemical
pathways (Barab�asi and Oltvai 2004), or coexpression net-
works (Stuart et al. 2003). Groups that are enriched for signs
of nonneutral evolution may thus be responsible for adaptive
phenotypes, even if the individual genes that are members of
those groups do not carry clear signatures of selection. The
task of finding statistical support for the adaptive patterns is
still complicated by numerous confounding factors. Besides
spurious signals caused by demography (Tiffin and Ross-
Ibarra 2014; Hoban et al. 2016), searches for positive selection
can be misled by the effects of negative selection on linked
variants; a process termed background selection
(Charlesworth et al. 1993). Indeed, similar patterns caused
by background selection and hitchhiking have led to an effort
to include its effects into null models for testing positive se-
lection (Comeron 2017). Controlling for demography and
background selection, as well as other features potentially
influencing measures of sequence evolution (Cutter and
Payseur 2013), is therefore important for realistic modeling
of adaptive evolution.

In this study, we analyze genomic data to search for signals
of polygenic adaptation in Theobroma cacao (hereafter ca-
cao), a tropical tree species best known for being the source of
cacao beans. Due to its importance for the chocolate industry,
cacao has considerable economic and agronomic value
(Guiltinan 2007). Recent work on cacao has provided insight
into the species’ domestication history (Cornejo et al. 2018;
Zarrillo et al. 2018). Here, focusing on wild cacao populations,
we first infer the demographic history of this species, and then
use transcriptome data to identify cacao-specific
coexpression networks. We use these networks to conduct
three sets of analyses: First, we search for evidence of specific
coexpression modules harboring an excess number of genes
that carry strong signatures of adaptive differentiation among
populations. Second, we examine the distributions of among-
population differentiation estimates to identify modules that
may be responsible for local adaptation, even if they do not
harbor individual genes bearing strong signals of adaptation.
Finally, we search for polygenic signals of relaxed selection by
identifying modules showing greater than expected accumu-
lation of deleterious mutations. Our results reveal evidence
for both positive and negative selection varying among

coexpression modules and provide an example of how poly-
genic adaptation can be searched for in nonmodel species.

Results
We obtained whole-genome and transcriptome data from 31
cacao individuals, representing four populations: Guiana
(n¼ 8), Mara~n�on (n¼ 8), Nanay (n¼ 7), and Iquitos
(n¼ 8). These populations originate from diverse locations
in central South America (fig. 1A) and likely represent the
diverse environments in which wild cacao populations are
found (Motamayor et al. 2008; Cornejo et al. 2018).
Summary statistics estimated from the genome data suggest
that these populations have distinct demographic histories
(table 1). Based on estimators of population mutation rate (h
¼ 4 Nel), Guiana harbors lower levels of genetic diversity
than the other populations, indicating a lower effective pop-
ulation size (Ne). Tajima’s D estimates were negative in Nanay,
possibly due to population size increase after a bottleneck
(Tajima 1989), and positive in the other populations, suggest-
ing population size decline. Pairwise FST estimates and a prin-
cipal component analysis (PCA) supported earlier findings
(Motamayor et al. 2008; Cornejo et al. 2018) by revealing
two population groupings: Guiana and Mara~n�on show higher
similarity to each other than either does to Nanay or Iquitos,
which cluster closely together along the first PC axes (fig. 1B).
The inferred admixture proportions further support this
grouping. Although the likely number of ancestral popula-
tions (K¼ 4) corresponds to the four genetic groups, Nanay
and Iquitos individuals show higher levels of admixture than
individuals belonging to Guiana and Mara~n�on (fig. 1D).

To gain further insight into the population history of these
four genetic groups, we conducted site frequency spectra
(SFS) based demography simulations with fastsimcoal2
(Excoffier et al. 2013). The best supported models (supple-
mentary tables S1 and S2, Supplementary Material online)
suggest that the Iquitos population, which is both genetically
and geographically close to the Nanay population, split from
the other populations as long as 878 K generations ago
(fig. 1C). Iquitos and Nanay might, however, have been con-
nected by gene flow until �3.5 K generations ago, which
combined with the fairly large and stable effective population
sizes (Nanay Ne � 110 K, Iquitos Ne � 119 K) may help to
explain the relatively low differentiation between them. In
contrast, Guiana and Mara~n�on diverged more recently,
around 42 K generations ago, but became isolated�7 K gen-
erations ago. They also have lower effective population size
estimates (Guiana Ne � 21 K, Mara~n�on Ne � 63 K), poten-
tially predisposing them to higher levels of genetic drift. For
exact maximum likelihood estimates and their 95% confi-
dence intervals (CI), see supplementary table S3,
Supplementary Material online.

Network Enrichment Analysis Reveals the Action of
Positive Selection
The four cacao populations we sampled are from areas of
South America that differ in temperature, precipitation, and
seasonality (supplementary figs. S1 and S2, Supplementary
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Material online). These populations also differ in their histor-
ical effective population sizes and the extent to which gene
flow has shaped genomic diversity. To explore whether the
action of directional and purifying selection also varies among
these populations, as might be expected given that they are
found in different geographic areas, we searched for signals of
local adaptation at polygenic and single-locus levels. As poly-
genic selection is characterized by small allele frequency shifts
at many loci, the footprints are more readily revealed when
considering the cumulative effects of multiple genes under-
lying adaptive phenotypes. To this end, we utilize an ap-
proach previously used with human data (Daub et al. 2013,
2017; Hsieh et al. 2017) by searching for signals of selection
among functionally related gene sets. However, cacao gene
sets have not been defined on the basis of biochemical path-
ways or other functional information. We therefore leveraged
gene expression variation among our samples to construct a

coexpression network to identify groups of genes with corre-
lated expression and then used the coexpression modules as
gene sets.

The network we constructed is based on expression vari-
ation among genotypes growing in a common environment,
rather than variation among tissues or due to the environ-
ment in which plants grew. Therefore, the coregulated (or at
least correlated) gene expression means that these genes are
likely to affect correlated phenotypes, resulting in the selec-
tion acting on these phenotypes also being correlated.
Because expression patterns do not show strong among-
population variation (supplementary fig. S3, Supplementary
Material online), we constructed a global coexpression net-
work using data from all individuals. The network consists of
15,073 genes, which are divided into 61 modules (supplemen-
tary fig. S4, Supplementary Material online). The number of
genes per module ranges from 40 to 1,817, with a median of
122 genes. According to Gene Ontology (GO) enrichment
analysis, all modules are enriched for genes involved in specific
biological processes (supplementary data set S1,
Supplementary Material online), suggesting that the modules
capture collections of genes with common functions.

We first focused on identifying modules enriched for indi-
vidual genes potentially affected by strong directional selec-
tion. Out of 20,890 genes, 381 (1.8%) had FST and dXY

estimates that could not be readily explained by the inferred
demography (supplementary data set S2, Supplementary

FIG. 1. Population structure and demographic history of the study populations. (A) Map showing approximate areas where the populations are
found. (B) Genetic variation along the first four eigenvectors of a PCA. The variance explained by each PC is shown in brackets. (C) A schematic of
the demographic history. Divergence times in number of generations, assuming l¼ 7� 10�9, are marked with one-sided arrows, whereas two-
sided arrows indicate times since migration ended. We note that due to uncertainty in mutation rates these estimates might be systematically
over- or underestimated. (D) Admixture proportions for the supported number of ancestral populations (K¼ 4).

Table 1. Summary Statistics for the Study Populations.

Genetic Diversity Pairwise FST

p hw Tajima’s D Guiana Mara~n�on Nanay

Guiana 4.85 3.93 1.25
Mara~n�on 7.27 6.56 0.62 0.25
Nanay 5.90 6.67 –0.62 0.42 0.31
Iquitos 8.82 8.47 0.25 0.36 0.27 0.18

NOTE.—p, nucleotide diversity (�10�3); hw, Watterson estimator (�10�3).
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Material online). Two coexpression modules were enriched
with these outlier genes (q< 0.1, Fisher’s exact test). Based on
REVIGO (Supek et al. 2011) summarization of the GO terms
associated with individual genes (435 and 128 genes, respec-
tively), the largest GO groups were related to defense
responses (e.g., response to fungus and wounding) and stress
responses (e.g., response to heat and salt stress) (supplemen-
tary data set S1, Supplementary Material online). To assess
the confidence of these assignments, as well as the confidence
of our coexpression network to capture functionally related
genes, we also conducted the GO enrichment analysis on
permutated data. We examined two features of the random-
ized GO sets: the number of significant (q< 0.1, Fisher’s exact
test) GO terms and the average P values of these terms. Out
of 1,000 randomized repeats, none produced as many signif-
icant GO terms as observed in the two modules identified as
being enriched for outlier genes. The average P values (reflect-
ing the strength of the GO enrichment) of the random mod-
els were, however, lower than was found in these two
modules (defense response ¼ 0.00036, stress response ¼
0.00032, highest P value of the random repeats ¼ 0.00031).
This pattern suggests that these two modules contain genes
involved in several distinct biological processes. Nevertheless,
the fact that genes within these modules exhibited correlated
expression indicates that they are coregulated, allowing for
selection to act on them jointly.

Neither of the two modules with an excess of outlier genes
showed overall deviations from the genome-wide back-
ground FST and dXY (supplementary fig. S5, Supplementary
Material online). However, the module putatively involved in
stress responses had nucleotide diversity (p), the ratio of non-
synonymous to synonymous diversities (pN/pS) and Tajima’s
D estimates that were lower than expected based on all genes
(supplementary fig. S6, Supplementary Material online).
Furthermore, for both modules, the ratio of nonsynonymous
to synonymous divergence (dN/dS) between two cacao sub-
species (Motamayor et al. 2013; Argout et al. 2017) was lower
than the genome-wide background (supplementary fig. S6,
Supplementary Material online). Together, these results sug-
gest that the two modules also experience stronger than av-
erage selective constraint.

Small Allele Frequency Shifts at Adaptive Modules
We next evaluated to what degree differential selection
among populations drives sequence differentiation of
coexpression modules, even if those modules do not contain
individual genes bearing signatures of strong selection. To do
this, we estimated FST and dXY for all genes across the four
populations, summed the values for genes belonging to each
module, and compared the module totals to distribution of
values simulated under the best-fit demography model
(fig. 1C). We compared the observed values to those from
one million simulated gene sets; 3 out of 61 modules
exceeded neutral expectations at a nominal q value threshold
of 0.01, suggesting that selection has a role in promoting
differentiation at these modules. These three modules con-
tained 145, 89, and 130 genes, respectively. It is possible that
the empirical observations deviate from the simulated data

due to poor fit of the demographic model, but given the very
high correspondence between the average observed and sim-
ulated estimates (supplementary tables S4 and S5,
Supplementary Material online), the model appears to cap-
ture neutral patterns reasonably well. However, as the neutral
simulations only inform about demography, but not selec-
tion, we next compared the observed FST and dXY estimates
to values obtained by randomly assigning genes to modules
(n¼ 10,000). With these empirical permutations, we retain
selection signals at individual genes while breaking up any
associations between them. For all three modules, both FST

and dXY estimates exceeded 99% of the permutated repeats
(P< 0.01, q< 0.1; supplementary fig. S7, Supplementary
Material online), further supporting that selection on these
modules differs from genome-wide expectations. To confirm
that these results are not due to a few large-effect genes, we
removed individual FST and dXY outlier genes (17, 4, and
8 genes, respectively) from the modules and compared the
adjusted estimates against the genome-wide background.
Even after removal of the outlier genes, there remained a
low probability (P< 0.05, Wilcoxon rank-sum test) of these
modules having elevated median values of FST and dXY by
chance. Moreover, for two of the modules, median p, pN/pS,
and Tajima’s D estimates were elevated compared with the
genome-wide background (supplementary fig. S6 and data
set S3, Supplementary Material online).

A GO enrichment analysis of the three modules with ele-
vated median differentiation revealed that they are enriched
for genes involved in protein modification (e.g., protein ubiq-
uitination and cellular protein modification), flowering (e.g.,
flower development and photoperiodism), and water trans-
port (e.g., water transport and response to water deprivation),
respectively (fig. 2A and B and supplementary data set S1,
Supplementary Material online). Indeed, in the first module
82 of 92 genes with defined GO terms were involved in pro-
tein modification, in the second module 37 out of 53 were
involved in flowering, and in the third module 55 out of 71
genes were involved in water transport. These modules were
also enriched for fewer GO terms than expected by chance;
88%, 91%, and 98% of permutated repeats (n¼ 1,000) pro-
duced more significant GO terms than the observed data. By
contrast, the statistical strength of the enrichment was stron-
ger than expected; only 10%, 3%, and 1% of the permutations
had average P values that were lower than the observed P
values.

Because genomic features affect sequence evolution
(Begun and Aquadro 1992; Nordborg et al. 1996; Cutter
and Payseur 2013; M€ahler et al. 2017; H€am€al€a and
Savolainen 2019), it is possible that the signals of elevated
differentiation are biased by the genomic neighborhood in
which the genes are found. To explore this possibility, we
tested whether genes at the candidate modules are atypical
in terms of recombination rate, gene density, mutation rate,
connectivity, expression level, expression variance, and B (a
proxy for the strength of background selection, Hudson and
Kaplan 1995; Nordborg et al. 1996). Although both FST and
dXY were correlated with the strength of background selec-
tion (B), recombination rate, and gene density (table 2),
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distributions for the candidate modules did not clearly differ
from the genome-wide background for any of them (P> 0.1,
Wilcoxon rank-sum test). Bayesian linear regression modeling
also revealed that genetic differentiation was affected by B,
recombination rate, and gene density (note that even though
these variables are correlated at the genome-wide level
[supplementary table S6, Supplementary Material online],
models showed no collinearity between them,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

variance inflation factor
p

< 2). Nevertheless, when com-
pared against the genome-wide background, regression coef-
ficients of the three candidate modules remained significant
(95% highest posterior density [HPD] intervals>0) in a model
with B, recombination rate, and gene density included (fig. 2C
and D). Furthermore, out of 10,000 repeats where genes were
randomized across modules,<1% produced HPD intervals as
extreme as the observed models. All of these results suggest
that these modules experience polygenic selection that differs
from genome-wide expectations.

Accumulation of Deleterious Mutations at the
Module Level
We next explored whether modules vary in their accumula-
tion of deleterious mutations, reflecting maladaptive

hitchhiking or relaxed selective constraint. To this end, we
utilized patterns of protein conservation among homologous
sequences to predict mutational effects with SIFT4G (Vaser
et al. 2016). Genome-wide, there appears to be a large accu-
mulation of putatively deleterious mutations within cacao, as
the SIFT-based prediction of the ratio of deleterious to syn-
onymous variants was 0.35. SIFT scores are not, however,
random with respect to coexpression modules. As with FST

and dXY, gene specific estimates from SIFT were summed for
each module and compared against randomly compiled
modules of equal size (n¼ 10,000). Of the 61 modules, 3
were enriched for low SIFT scores among all individuals, sug-
gesting that these modules harbor an excess of deleterious
mutations (fig. 3A). SIFT scores estimated for each population
confirmed that the harmful mutations at these modules are
not specific to just one of the populations, as two of these
modules had a significant excess (q< 0.1, Fisher’s exact test)
of low SIFT scores in all four populations and one module was
significantly enriched in three of the populations (Iquitos,
Guiana, and Mara~n�on). Regression modeling revealed that
SIFT scores are negatively related to recombination rate
and expression variance, and positively related to mutation
rate and expression level (table 2). However, these features are
unlikely responsible for the excess of deleterious mutations at

FIG. 2. Measures of differential selection at candidate modules. (A and B) The sampling distributions of FST and dXY compared with observed
genome-wide distribution and the full simulated distribution. The gray horizontal line marks the median of the genome-wide distribution and
stars indicate significant differences in comparison to that (P< 0.05, Wilcoxon rank-sum test). (C and D) Posterior density distributions from
Bayesian linear models which control for genomic features. The candidate modules are compared against 500 randomly sampled genes (control,
also note color codes apply to C and D).
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these modules (fig. 3B). Among the three modules harboring
an excess of deleterious mutations was the water transport
module that also was characterized by elevated estimates of
FST and dXY. The other two SIFT outlier modules were
enriched for genes involved in DNA repair (100 genes) and
cellular signaling (438 genes) (supplementary data set S1,
Supplementary Material online). However, 74% and 19% of
the permutations (n¼ 1,000) produced more significant GO
terms, and 14% and 91% had lower average P values than the
observed data, suggesting these two modules might be in-
volved in multiple biological processes.

To seek additional validation for the inferred accumulation
of harmful mutations in specific modules, we estimated the
distribution of fitness effects (DFE) with DFE-alpha (Keightley
and Eyre-Walker 2007). As opposed to SIFT predictions, DFE is
based on comparing the SFS of nonsynonymous (0-fold) to
synonymous (4-fold) sites. DFE estimated from the whole-
genome SFS was strongly L-shaped (shape parameter of the
gamma distribution ¼ 0.06), meaning that when nonsynon-
ymous sites are assigned to bins based on the strength of
purifying selection (Nes), a large proportion of variants have

either nearly neutral (Nes <1) or highly deleterious (Nes
>100) estimates (fig. 4). Population-specific DFE differed
slightly from one another, consistent with the inferred de-
mography (e.g., Guiana, the population with the smallest Ne,
has a greater proportion of sites in the nearly neutral cate-
gory), but there were no major differences among them (sup-
plementary fig. S8, Supplementary Material online). Among
the modules identified in our previous analyses, the two
modules enriched among FST and dXY outlier genes (defense
response and stress response) were enriched for sites in the
highly deleterious category (Nes >100). These modules also
had lower than expected dN/dS estimates (supplementary fig.
S6, Supplementary Material online), indicative of stronger
than average selective constraint (fig. 4). Two of the three
modules with high median FST and dXY estimates (protein
modification and flowering) had DFE similar to the whole-
genome background (fig. 4). The third outlier module (water
transport), as well as the other two modules with low SIFT
scores, bore multiple signatures of relaxed selective constraint.
In particular, each of these three modules had an excess of
sites in the nearly neutral category (Nes <1), as well as pN/pS

Table 2. The Relationship between Genomic Features and Measures of Sequence Evolution.

FST dXY SIFT p pN/pS Tajima’s D

q b q b q b q b q b q b

Background selection –0.15* –0.07* –0.10* –0.05* –0.01 0.01 0.24* 0.20* 0.01 0 0.05* 0.04*
Recombination rate –0.13* –0.10* –0.05* –0.04* –0.05* –0.04* 0.25* 0.13* 0.05* 0.05* 0.11* 0.05*
Gene density –0.03* –0.05* –0.05* –0.06* 0.02 0.02 –0.06* –0.01 –0.01 –0.01 –0.02* –0.02*
Mutation rate –0.01 –0.01 –0.01 0.02 0.11* 0.06* 0.17* 0.09* –0.14* –0.05* 0.05* 0.05*
Connectivity 0.01 0 –0.01 –0.02 0.02 0 –0.09* –0.08* 0.01 0 –0.05* –0.04*
Expression level 0.01 0.01 –0.01 –0.01 0.16* 0.16 –0.10* –0.08* –0.13* –0.12* –0.05* –0.04*
Expression variance 0 –0.01 0.01 0.01 –0.09* –0.06* 0.13* 0.11* 0.10* 0.06* 0.06* 0.05*

NOTE.—For full correlation matrix, see supplementary table S6, Supplementary Material online. q, Spearman’s rank correlation coefficient; b, coefficients from multiple
regression models.
*P< 0.05 (q) or BF>1 (b).

FIG. 3. SIFT scores at candidate modules. (A) The module-distributions compared with the genome-wide distribution. The gray horizontal line
marks the median of the genome-wide distribution and stars indicate significant differences in comparison to that (P< 0.05, Wilcoxon rank-sum
test). (B) Posterior density distributions from a Bayesian linear model that controls for genomic features. The candidate modules are compared
against 500 randomly sampled genes.
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and dN/dS estimates that were higher than the genome-wide
background (supplementary fig. S6, Supplementary Material
online).

Discussion

Genomic Footprints of Polygenic Adaptation
The growing recognition that adaptation is rarely attributable
to only few large-effect genes, along with advances in se-
quencing technologies, has led to an increase in studies ex-
amining genomic signatures of polygenic adaptation
(Pritchard et al. 2010; Daub et al. 2013, 2017; Berg and
Coop 2014; Boyle et al. 2017; Hsieh et al. 2017; Sella and
Barton 2019). Most of this work has focused on humans,
although a few studies have been done with plant species
(He et al. 2016; Beissinger et al. 2018; Exposito-Alonso et al.
2018; Josephs et al. 2019). A common way to search for the
quantitative signals of selection is by obtaining polygenic
scores from GWAS (Rosenberg et al. 2018). Although this
method can have high sensitivity when applied to large sam-
ples, the focus on preselected phenotypes might lead to ex-
clusion of important traits. Furthermore, without controlling
for the environmental differences, polygenic scores are easily
biased by population structure (Berg et al. 2019; Sohail et al.
2019). An alternative to polygenic scores is to examine the
properties of genes with shared function (Daub et al. 2013,
2017; Hsieh et al. 2017). Here, we used transcriptome data to
identify groups of genes with coregulated expression and
then used the coexpression modules to search for genomic
footprints of polygenic adaptation among cacao populations.

Our analyses identified two sets of modules with potential
signatures of polygenic adaptation. One of these sets was
comprised of two modules that contained an excess of genes
with signals of strong selection. GO enrichment analysis
revealed that these modules are most strongly enriched for
defense and stress response genes. However, the analyses also
revealed enrichment for more biological processes than

expected by chance, suggesting that the modules may actu-
ally capture genes involved in several distinct physiological or
developmental processes. Nevertheless, the among-genotype
correlations in gene expression suggest that variation in the
phenotypes associated with each of these modules is at least
partially correlated. Regardless of the phenotypic traits asso-
ciated with these modules, the excess of highly differentiated
(FST and dXY) genes corresponds to a model where adaptive
differentiation advances though large, but still polygenic, allele
frequency shifts (Höllinger et al. 2019). Interestingly, these two
modules also show evidence (SIFT scores, DFE, and dN/dS) of
strong selective constraint. This combination of results sug-
gests a model in which the majority of genes in these modules
are under selective constraint, leaving few that are uncon-
strained and thus able to respond to selection.

The other set of modules bearing a potential signature of
polygenic adaptation was comprised of three modules with
FST and dXY distributions shifted toward large estimates.
Importantly, genes targeted by strong selection were not
overrepresented among these modules, but the footprint of
selection became apparent only when considering the cumu-
lative effects of multiple genes, each bearing only subtle sig-
nals. This pattern is, in fact, the hallmark of polygenic
adaptation (Chevin and Hospital 2008; Stephan 2016;
Höllinger et al. 2019). Based on GO enrichment analysis, these
modules are potentially involved in protein modification,
flowering, and water transport. Protein modification is not
among the classical traits related to local adaptation, but it
undoubtedly has a role in myriad processes, making it a viable
target for differential selection (Collevatti et al. 2019).
Signatures of adaptation at modules related to both flowering
and water transport are consistent with previous work on
local adaptation (Barrett and Hoekstra 2011; Savolainen et al.
2013; Tiffin and Ross-Ibarra 2014). Moreover, the cacao pop-
ulations are from areas that differ in temperature and precip-
itation (supplementary figs. S1 and S2, Supplementary
Material online), both of which may impose selection that

FIG. 4. The DFE for candidate modules. The 0-fold degenerate sites are divided into four bins based on the strength of purifying selection (Nes). Error
bars show 95% CIs. The modules of interest were detected using different methods: 1 and 2, enriched among FST and dXY outlier genes; 3–5,
enriched for high FST and dXY; 5–7, enriched for low SIFT scores; 8, all 15,073 genes in the transcriptome data.
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affects flowering time and traits associated with water avail-
ability. Although genetic studies have discovered major effect
loci underlying flowering time variation in some plant species
(Salom�e et al. 2011; Keller et al. 2012; Wang et al. 2018),
common-garden experiments, and GWAS on other species
point to variation being due to many genes with small effects
(Savolainen et al. 2007; Buckler et al. 2009; H€am€al€a et al. 2018).
Similarly, the genetic basis of variation in response to water
limitation, which is likely shaped in part by physiological pro-
cesses related to water transport, are often highly polygenic
(He et al. 2016; Exposito-Alonso et al. 2018).

Polygenic Adaptation and Accumulation of
Deleterious Mutations
To examine the role of purifying selection in cacao adapta-
tion, we used two complementary approaches for inferring
deleterious effects: sequence homology-based prediction with
SIFT4G (Vaser et al. 2016) and estimation of fitness effects
with DFE-alpha (Keightley and Eyre-Walker 2007). At the
whole-genome level, cacao harbors a high proportion of pu-
tatively deleterious alleles (based on SIFT predictions), a high
ratio of nonsynonymous to synonymous nucleotide diversi-
ties (pN/pS ¼ 0.36), and a L-shaped DFE—all of which are
indicative of relaxed purifying selection (Eyre-Walker and
Keightley 2007; Chen et al. 2017). Such patterns are com-
monly observed in species that have undergone a domesti-
cation bottleneck (Kono et al. 2016; Gaut et al. 2018; Valluru
et al. 2019), but they also can result from other processes. For
example, comparisons of DFE across multiple species have
found that greater longevity and lower outcrossing rate gen-
erally result in increased proportion of nearly neutral muta-
tions (Gossmann et al. 2010; Chen et al. 2017). Cacao, being a
long-lived insect-pollinated tree species that has been utilized
by humans for thousands of years (Zarrillo et al. 2018), might
therefore exhibit relaxed purifying selection due to both nat-
ural and anthropogenic reasons.

We then examined how harmful mutations are distributed
among the coexpression modules to evaluate whether some
modules harbor an enrichment of deleterious mutations, and
if there is a relationship between the efficacy of purifying
selection and polygenic adaptation. The traditional model
of hitchhiking states that probability of highly deleterious
mutations being fixed is correlated with the strength of pos-
itive selection acting on linked variants (Maynard Smith and
Haigh 1974). Evidence for hitchhiking of deleterious variants
has been found in several domesticated plant species (Kono
et al. 2016; Gaut et al. 2018; Valluru et al. 2019), and hitchhik-
ing appears to be responsible for increased deleterious load in
humans (Chun and Fay 2011) and in poplar (Zhang et al.
2016). In contrast to most previous studies, here, we did not
focus only on highly deleterious mutations (e.g., SIFT score
<0.05). By looking at all putatively harmful mutations, our
analyses have the potential to reveal evidence for the accu-
mulation of deleterious alleles that might result from hitch-
hiking associated with polygenic adaptation or processes that
result in relaxed purifying selection.

We found that five modules were outliers in terms of
overall SIFT scores; two modules with high SIFT scores,

indicative of stronger purifying selection and three modules
with low SIFT scores, indicative of relaxed selection. The two
modules bearing signatures of high selective constraint also
harbored an excess number of genes with high FST and dXY

estimates. This combination suggests that most genes in
these modules (defense and stress response) are highly con-
strained, but that there are evolutionary labile parts of the
module that are important for adaptation. Interestingly, one
of the three modules with a low SIFT scores, indicative of an
excess of deleterious mutations, is also characterized by ele-
vated median FST and dXY estimates. This module, putatively
involved in water transport, also exhibited an elevated pro-
portion of nearly neutral mutations, and greater than
expected pN/pS and dN/dS estimates.

At first glance it seems that this pattern might fit the
model of maladaptive hitchhiking, in which positive selection
increases the frequency of linked deleterious variants.
However, as both theoretical (Maynard Smith and Haigh
1974; Barton 1995; Hartfield and Otto 2011) and empirical
(Chun and Fay 2011) studies have associated maladaptive
hitchhiking with high selection coefficients, weak selection
acting on multiple loci seems unlikely to be able to increase
the deleterious load. Moreover, genetic hitchhiking requires
physical linkage between positively selected and deleterious
variants, whereas genes that comprise the coexpression mod-
ules are not physically linked in the genome. As such, if ge-
netic hitchhiking is responsible for the excess of deleterious
mutations, we would expect a negative relationship between
the measures of positive selection (FST and dXY) and SIFT
scores. However, these measures were effectively uncorrelated
(Spearman’s q � 0) in our data. The lack of correlation
suggests that the signatures of relaxed purifying selection at
this module are due to a recent change in selective constraint
(Chun and Fay 2011). Such change could, for example, hap-
pen if the selection pressure on traits controlled by these loci
has lessened due to environmental change. The increased
genetic drift that follows the decrease of purifying selection
may then allow random alleles to reach high frequencies,
resulting in increased FST and dXY estimates. Although our
analysis shows that these high estimates are unlikely to arise
by chance, it is important to realize that these tests are made
against the hypothesis that selection is not acting differently
on any group of genes. In other words, if genes from a single
module are exposed to high drift due to relaxed selective
constraint, it might lead to apparent signals of positive selec-
tion that exceeds genome-wide expectations.

The other two modules showing evidence of relaxed pu-
rifying selection, one possibly involved in DNA repair and one
possibly involved in cellular signaling, did not show any signs
of having been subject to positive selection. Therefore, the
increase in deleterious load at these modules is also likely the
result of relaxed selective constraint (Chun and Fay 2011).
Previous work has found increased deleterious load in the
domesticated cacao cultivar, with evidence of decreasing yield
due to this load (Cornejo et al. 2018). Here, we have shown
that compared with many other undomesticated plant spe-
cies (Gossmann et al. 2010; Chen et al. 2017), the wild cacao
populations also exhibit relaxed purifying selection, and that
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the deleterious mutations are nonrandomly distributed
among the coexpression modules, which is likely related to
relaxed selective constraint.

Evidence of Linked Selection across the Cacao
Genome
Our analysis of genomic features not only revealed potential
factors confounding searches for selection but also provided
insight into genome evolution in cacao. Consistent with the
evidence of relaxed purifying selection, the mean estimate of
B¼ 0.90 suggests that background selection at genic regions
is not a major factor underlying diversity patterns in cacao.
However, the range of B estimates (0.1< B< 1.0) indicates
that the effect on some genes can be considerable, and that
all genes are affected by background selection (supplemen-
tary fig. S9, Supplementary Material online). Indeed, our anal-
ysis showed that measures of sequence differentiation are
influenced by background selection, with FST being more
strongly correlated with B than dXY. As the former is a relative
measure of differentiation (FST ¼ 1�HW/HB, where HW and
HB are the mean number of differences within and between
population, Hudson et al. 1992), it can be biased when back-
ground selection reduces diversity without the accompanying
increase in divergence (Charlesworth 1998; Cruickshank and
Hahn 2014). Our results therefore support the conclusion
that controlling for background selection is beneficial in
searches for positive selection (Comeron 2017).

To have a more complete picture of factors driving ge-
nome evolution in cacao, we also examined how individual
genomic features affect genetic diversity. The regression mod-
eling of p revealed that diversity is positively associated with
recombination rate, expression variance, and mutation rate,
but negatively associated with expression level, connectivity,
and gene density. These relationships mostly stem from the
effects of positive and negative selection on linked variants
(Maynard Smith and Haigh 1974; Begun and Aquadro 1992;
Charlesworth et al. 1993; Hudson and Kaplan 1995; Nordborg
et al. 1996; Cutter and Payseur 2013). Namely, low recombi-
nation increases the extent of linked selection, and high gene
density creates a larger target for selection to act on (Hudson
and Kaplan 1995; Nordborg et al. 1996; Cutter and Payseur
2013). Recombination might, however, be mutagenic itself, so
controlling for mutation rate variation through neutral diver-
gence is important for disentangling these effects (Begun and
Aquadro 1992; Cutter and Payseur 2013). On the other hand,
high connectivity and expression level are usually positively
associated with stronger selective constraint (Josephs et al.
2017; M€ahler et al. 2017).

Conclusions
Here, we have presented a novel approach for finding foot-
prints of polygenic adaptation that is not dependent on
preselected phenotypes or predefined gene sets. In fact, the
only requirement is transcriptome data from an appropriate
population sample, making the method suitable for both
model and nonmodel species. By applying measures of se-
quence evolution on gene sets derived from a coexpression

network, we have gained insights into polygenic adaptation in
a tropical tree species, cacao. In particular, we found that
evidence for both adaptive differentiation among cacao pop-
ulations, and the effects of purifying selection are nonran-
domly distributed among coexpression modules. Three
modules, those putatively involved in protein modification,
flowering, and water transport, showed orchestrated allele
frequency shifts consistent with polygenic selection that
may have accompanied climate change or range expansion
into more seasonally variable climates in central and eastern
Amazonia. One of these modules, involved with water trans-
port, also bears an excess of deleterious mutations, suggesting
relaxed purifying selection that became evident when exam-
ining genes at the level of coexpression modules. The increas-
ing availability of gene expression and genomic data for
diverse species, combined with the generally polygenic nature
of adaptation and the difficulty of disentangling signals of
selection from demographic effects, makes the approach pre-
sented here a promising way to quickly identify gene sets
likely to be involved in local adaptation.

Materials and Methods

Sample Collection, Library Preparation, and
Sequencing
We acquired whole-genome and transcriptome data from 31
cacao individuals, which represented four populations:
Guiana (n¼ 8), Mara~n�on (n¼ 8), Nanay (n¼ 7), and
Iquitos (n¼ 8). Leaf tissue was collected from trees main-
tained in a common garden in the International Cacao
Collection at Centro Agron�omico Tropical de Investigaci�on
y Ense~nanza (CATIE), Costa Rica. Two healthy and mature
(stage E) leaves were collected from each genotype, flash fro-
zen, and ground under liquid nitrogen. DNA was extracted by
taking ground tissue powder at low input (0.25 g/15 ml lysis
buffer) through a CTAB isolation based on Michiels et al.
(2003) with the following modifications: the lysis buffer con-
tained 4% PVP; the isopropanol precipitation was carried out
at�20�C overnight; the day 2 clean up steps were carried out
in 50 ml tubes; and proteinase K digest (20 ll/ml Qiagen
#19131, 2 h at 50�C) was added prior to the phenol: chloro-
form: isoamyl alcohol extraction. Final pellets were resus-
pended in 150 ll TE. RNA was extracted from the ground
tissue according to the PureLink Plant RNA Reagent protocol
(Thermo Fisher Scientific), with minor modifications as pre-
viously described in Pokou et al. (2019). After extraction, RNA
samples were treated with RNase-free DNase (Thermo Fisher
Scientific) according to manufacturer’s instructions, purified
with an additional ethanol precipitation, and resuspended in
RNase-free water. Library preparation and sequencing were
performed at The Pennsylvania State University Genomics
Core Facility. Illumina TruSeq DNA PCR-Free High
Throughput kit and Illumina TruSeq Stranded mRNA
Library kit were used to prepare the DNA and RNA libraries,
respectively. Pooled libraries were normalized and denatured
with 0.2 N NaOH for a loading concentration of 375 pM on a
NovaSeq S2 (300) flowcell. Cluster amplification of denatured
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templates and 150-bp paired-end sequencing was performed
according to the standard Illumina NovaSeq S2 protocol.

Processing of the Whole-Genome Sequencing Reads
Low-quality reads and sequencing adapters were removed
with Trimmomatic (Bolger et al. 2014), and the remaining
reads were aligned to the cacao reference genome, Criollo
v2.0 (Argout et al. 2017), with BWA-MEM (Li and Durbin
2009; Li 2013). GATK (DePristo et al. 2011) was used to re-
move duplicated reads, add read group information and re-
align indels. The median read coverage per genome per
individual ranged from 21 to 46�. Even with these high
medians, the variability in coverage might introduce bias
into our results (Nielsen et al. 2011). We therefore took a
genotype call-free approach with most of the downstream
analyses. Genotype likelihoods were generated with the
GATK model in ANGSD (Korneliussen et al. 2014) to be
used instead of SNP-calls. However, to estimate population
recombination rates (see “Detection of Differential
Selection”), genotype calling was required. To this end, var-
iants called with Freebayes (Garrison and Marth 2012) were
filtered with VCFtools (Danecek et al. 2011) and phased with
Beagle 5.0 (Browning et al. 2018). With both genotype like-
lihoods and genotype calls, sites were required to have a
mapping quality over 30 and site quality over 20. SNP-calls
with genotype quality<20 and coverage<10� were further
removed.

Analysis of Population Structure
Genetic diversity within populations was estimated using
three summary statistics with ANGSD (Korneliussen et al.
2014): nucleotide diversity p (Tajima 1983) and Watterson
estimator hW (Watterson 1975), which are estimators of the
population mutation rate h ¼ 4 Nel, and Tajima’s D, which
can indicate skews in the site frequency spectrum due to
demography or selection (Tajima 1989). We then evaluated
genetic relationships among the study populations by con-
ducting a PCA and an admixture analysis with PCAngsd
(Meisner and Albrechtsen 2018). The supported number of
PCs was used to define the likely number of ancestral pop-
ulations (K).

Demography Simulations
To study the demographic history of these populations, we
conducted SFS-based coalescent simulations with fastsim-
coal2 (Excoffier et al. 2013). Folded SFS were estimated
from 4-fold degenerate sites with ANGSD (Korneliussen
et al. 2014). As the multidimensional SFS could be reliably
estimated only for three populations, we performed demog-
raphy simulations using all possible 3 D combinations.
Simulations with different divergence orders and migration
scenarios were repeated 50 times and the relative fit among
models with highest likelihoods was tested with the Akaike
information criterion (AIC). The best fitting models were used
to define effective populations sizes (Ne), divergence times
(T), and migration rates (m) for the populations. CIs for the
parameters were estimated using 100 nonparametric boot-
strap SFS. Mutation rate l ¼ 7� 10�9 per base pair was

assumed for all simulations. This estimate is derived from
mutation accumulation experiments in Arabidopsis thaliana
(Ossowski et al. 2010) and it is close to one estimated with
parent–offspring sequencing for a woody perennial, peach
(7.77� 10�9, Xie et al. 2016). The estimate is not, however,
cacao-specific and the uncertainty in mutation rates affects
our demography estimates at the overall level (e.g., higher l
would lead to lower Ne and T estimates), but it does not
influence the relative differences between populations.

Construction of a Coexpression Network
After removing low-quality reads and sequencing adapters
with Trimmomatic (Bolger et al. 2014), STAR (Dobin et al.
2013) was used to align RNA-Seq reads against the Criollo v2.0
reference genome, and count reads overlapping each gene
model. We only used genes with median read count over 10.
Count data were normalized with variance stabilization trans-
formation (VST) in DESeq2 (Love et al. 2014) prior to expres-
sion analysis. The presence of population structure in the
expression data was evaluated with PCA in base R (R Core
Team 2019). We then used weighted correlation network
analysis (WGCNA) (Langfelder and Horvath 2008) to detect
genes with similar expression patterns among samples. Based
on the criterion of an approximate scale-free topology, a soft
thresholding power of 12 was used to calculate adjacencies
for a signed coexpression network. Topological overlap matrix
(TOM) and dynamic-cut tree algorithm were used to detect
network modules. We imposed a minimum module size of 30
genes for the initial network construction and later merged
modules exhibiting >90% similarity. To infer putative func-
tions for these modules, we performed BLAST queries against
the A. thaliana nucleotide database (Berardini et al. 2015).
The GO terms (Ashburner et al. 2000) associated with A.
thaliana homologs (alignment e value <1� 10�5) were
extracted and used to find common biological processes
among cacao genes belonging to the same modules. One-
sided Fisher’s exact test was used to detect overrepresented
terms, which were summarized with REVIGO (Supek et al.
2011). We refer to modules by their largest REVIGO group,
although we acknowledge that many genes in these modules
may be involved in other processes.

Detection of Differential Selection
We estimated allele frequency differentiation between pop-
ulations to identify genes potentially contributing to local
adaptation. After employing a model by Kim et al. (2011)
to estimate allele frequencies from the genotype likelihoods,
differentiation proportions were calculated with a relative
measure FST (Wright 1951) and an absolute measure dXY

(Nei 1987). In contrast to FST, dXY is not affected by within-
population levels of genetic diversity (Charlesworth 1998;
Cruickshank and Hahn 2014), but it can be biased by unequal
sample sizes. We therefore focused on genes and modules
showing signs of selection with both measures. We used in-
formation from SNPs that localized within the Criollo v2.0
gene models to define gene specific FST and dXY estimates. FST

was estimated with Hudson’s measure (Hudson et al. 1992;
Bhatia et al. 2013), using a weighting method by Reynolds
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et al. (1983) to combine estimates across multiple sites. dXY

was estimated for SNPs, as opposed to all sites within a gene,
so as not to bias the estimates based on different combina-
tions of variable sites and gene lengths. Per gene FST and dXY

were calculated for each population comparison and aver-
aged to acquire global estimates. To identify genes showing
higher than neutral differentiation, the observed values were
compared with FST and dXY values from simulated data gen-
erated with ms (Hudson 2002). To obtain an approximation
of recombination rate variation across the Criollo v2.0 ge-
nome, we used the genomic data and FastEPRR (Gao et al.
2016) to estimate population recombination rates (4 Ner) in
50-kb sliding windows. We performed this analysis for each
population separately, used the Ne parameters to transform
4 Ner to r, and averaged the per base pair recombination rates
across the four populations. We used these r estimates in
combination with Ne, m, and T, going back to most recent
common ancestor of these populations, to generate 200,000
neutral fragments (�10� the number of protein coding
genes in the transcriptome data) that corresponded in size
to gene lengths obtained from the genome annotation. We
defined P values by comparing the observed estimates against
percentiles of the simulated distributions. The P values were
adjusted for multiple testing by transforming them into false
discovery rate-based q values (Storey and Tibshirani 2003).
Genes with FST- and dXY-based q values <0.01 were consid-
ered putatively adaptive.

Analysis of Deleterious Mutations
Putatively deleterious mutations were identified with SIFT4G
(Vaser et al. 2016). We built a custom database for the Criollo
v2.0 reference genome by comparing the translated protein
sequences against UniRef90 database (Suzek et al. 2015).
Based on protein conservation among homologous sequen-
ces, SIFT assigns a score from 0 to 1 for nonsynonymous
variants, with lower values corresponding to more harmful
effects. Variants called from the whole data set (minor allele
frequency >0.2) were annotated with SIFT. To further exam-
ine the role of purifying selection, we estimated the DFE for
deleterious mutations (Eyre-Walker and Keightley 2007). The
folded SFS for DFE analysis were estimated from 0- and 4-fold
sites with ANGSD, and the DFE-models were fitted to these
with DFE-alpha (Keightley and Eyre-Walker 2007). To account
for the effects of nonequilibrium population histories, two-
step Ne change was included into the models. The best fitting
Ne parameters were estimated from the whole-genome SFS
and fixed for module-specific analyses. A total of 1,000 non-
parametric bootstrap SFS were used to define CIs for the Nes
estimates.

Network Enrichment Analysis
We combined information from the coexpression network
with analyses of sequence evolution to evaluate whether se-
lection is acting differently on the coexpression modules. First,
we tested whether any of the modules are overrepresented
among individual genes exhibiting significant selection outlier
status (FST and dXY q value <0.01). Next, module-specific
estimates of selection were acquired by summing the FST

and dXY estimates across genes belonging to each module
and compared against one million simulated modules of
equal size to assess their deviation from neutral expectations.
Furthermore, we performed permutation testing by random-
izing the gene-specific estimates across modules to retain
selection information at individual genes while breaking up
associations between them. This approach is likely to be more
conservative than the simulation-based test, because the null
model now includes values influenced by selection. We there-
fore chose a more lenient q value cutoff of 0.1 for the per-
mutation testing. Software for conducting the network
enrichment analysis is available at https://github.com/tha-
mala/NET

Modeling of Background Selection and Genomic
Features
We also assessed to what degree variation in background
selection and genomic features influence our results by con-
ducting Bayesian linear regression modeling with R package
MCMCpack (Martin et al. 2011). First, to approximate the
strength of background selection across the genome, we ap-
plied a model by Nordborg et al. (1996) to estimate the pa-
rameter B¼ p/p0, where p0 is genetic diversity in the absence
of selection. Following McVicker et al. (2009) and Rettelbach
et al. (2019), B at a neutral site x was estimated as:

B ¼ exp �
Xn

i¼1

udsi

ðsi þ rx;iÞ2

 !
;

where ud is deleterious mutation rate, si is selection against
heterozygotes at site i, and rx;i is recombination probability
between x and i. To account for selection variability at differ-
ent parts of the genome, we used DFE estimated in 500-kb
sliding windows to define s for the selected sites. B was then
estimated for each gene by taking into account recombina-
tion rates and the number of selection targets (0-fold sites) at
genes found on the same chromosome. The measure thus
approximates the expected reduction in diversity at a gene
due to purifying selection acting on linked sites. Next, as
synonymous divergence between taxonomic groups is
thought to reflect variation in mutation rates (Begun and
Aquadro 1992; Cutter and Payseur 2013), we estimated the
proportion of nucleotide substitutions at 4-fold sites (ds) be-
tween the two sequenced cacao cultivars: Criollo (Argout
et al. 2017), belonging to the subspecies cacao, and Matina
1-6 (Motamayor et al. 2013), belonging to the subspecies
sphaeorocarpum (Motamayor et al. 2008). Besides morpho-
logical differences underlying the taxonomical grouping, these
cultivars are highly differentiated genetically (dS¼ 0.02; higher
than the corresponding estimate between human and chim-
panzee, e.g., Chen and Li 2001). We acknowledge, however,
that these are still subspecies of cacao, so the results may not
be independent of within-species variation. Orthologous gene
pairs were identified with OrthoFinder (Emms and Kelly
2015), coding sequences aligned with MAFFT (Nakamura
et al. 2018), and dS estimated with an R package SeqinR
(Charif and Lobry 2007). We then used weakly informative
priors and 100,000 MCMC iterations, with a burn-in of 5,000
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and thinning interval of 10, to fit the following model to the
data:

y ¼ aþ bxB þ bxrec þ bxgen:den þ bxmut þ bxcon

þ bxexp:sum þ bxexp:var þ e

Here, y is either FST, dXY, or SIFT score, a is the intercept, xB

is background selection, xrec is recombination rate, xgen:den is
gene density, xmut is mutation rate, xcon is connectivity,
xexp:sum is expression level, xexp:var is expression variance,
and e is the error term. The connectivity measure is based
on pairwise correlation coefficients among RNA-Seq read
counts, as estimated by WGCNA (Langfelder and Horvath
2008). All predictors were standardized to mean of 0 and
SD of 1. Before running the final model, redundant predictors
were removed by conducing stepwise model selection with
Bayes factors. We then added a categorical predictor where
the candidate modules were represented by unique identifiers
and others by a common identifier. The model thus compares
the modules of interest against the genome-wide back-
ground. Last, we assessed the robustness of the modeling
results by randomizing the categorical predictor across genes
and counting the proportion of repeats producing 95% HPD
intervals more extreme than the observed ones.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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